AP Calculus AB Scoring Guidelines

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

Question 1

(a) $\int_{0}^{300} r(t) d t=270$

According to the model, 270 people enter the line for the escalator during the time interval $0 \leq t \leq 300$.
(b) $20+\int_{0}^{300}(r(t)-0.7) d t=20+\int_{0}^{300} r(t) d t-0.7 \cdot 300=80$

According to the model, 80 people are in line at time $t=300$.
(c) Based on part (b), the number of people in line at time $t=300$ is 80 .

The first time t that there are no people in line is
$300+\frac{80}{0.7}=414.286$ (or 414.285) seconds.
(d) The total number of people in line at time $t, 0 \leq t \leq 300$, is modeled by $20+\int_{0}^{t} r(x) d x-0.7 t$.
$r(t)-0.7=0 \Rightarrow t_{1}=33.013298, t_{2}=166.574719$

t	People in line for escalator
0	20
t_{1}	3.803
t_{2}	158.070
300	80

The number of people in line is a minimum at time $t=33.013$ seconds, when there are 4 people in line.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers rate out } \\ 1: \text { answer }\end{array}\right.$

1: answer

1 : considers $r(t)-0.7=0$
1 : identifies $t=33.013$
1: answers
1 : justification

AP ${ }^{\circledR}$ CALCULUS AB 2018 SCORING GUIDELINES

Question 2

(a) $v^{\prime}(3)=-2.118$

The acceleration of the particle at time $t=3$ is -2.118 .
(b) $x(3)=x(0)+\int_{0}^{3} v(t) d t=-5+\int_{0}^{3} v(t) d t=-1.760213$

The position of the particle at time $t=3$ is -1.760 .
(c) $\int_{0}^{3.5} v(t) d t=2.844($ or 2.843$)$
$\int_{0}^{3.5}|v(t)| d t=3.737$
The integral $\int_{0}^{3.5} v(t) d t$ is the displacement of the particle over the time interval $0 \leq t \leq 3.5$.

The integral $\int_{0}^{3.5}|v(t)| d t$ is the total distance traveled by the particle over the time interval $0 \leq t \leq 3.5$.
(d) $v(t)=x_{2}{ }^{\prime}(t)$
$v(t)=2 t-1 \Rightarrow t=1.57054$
The two particles are moving with the same velocity at time $t=1.571$ (or 1.570).

1: answer
$3:\left\{\begin{array}{l}1: \int_{0}^{3} v(t) d t \\ 1: \text { uses initial condition } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { answers } \\ 2: \text { interpretations of } \int_{0}^{3.5} v(t) d t \\ \quad \text { and } \int_{0}^{3.5}|v(t)| d t\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { sets } v(t)=x_{2}{ }^{\prime}(t) \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

Question 3

(a) $f(-5)=f(1)+\int_{1}^{-5} g(x) d x=f(1)-\int_{-5}^{1} g(x) d x$ $=3-\left(-9-\frac{3}{2}+1\right)=3-\left(-\frac{19}{2}\right)=\frac{25}{2}$
(b) $\int_{1}^{6} g(x) d x=\int_{1}^{3} g(x) d x+\int_{3}^{6} g(x) d x$

$$
\begin{aligned}
& =\int_{1}^{3} 2 d x+\int_{3}^{6} 2(x-4)^{2} d x \\
& =4+\left[\frac{2}{3}(x-4)^{3}\right]_{x=3}^{x=6}=4+\frac{16}{3}-\left(-\frac{2}{3}\right)=10
\end{aligned}
$$

(c) The graph of f is increasing and concave up on $0<x<1$ and $4<x<6$ because $f^{\prime}(x)=g(x)>0$ and $f^{\prime}(x)=g(x)$ is increasing on those intervals.
(d) The graph of f has a point of inflection at $x=4$ because $f^{\prime}(x)=g(x)$ changes from decreasing to increasing at $x=4$.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { split at } x=3 \\ 1: \text { antiderivative of } 2(x-4)^{2} \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { intervals } \\ 1: \text { reason }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$

Question 4

(a) $H^{\prime}(6) \approx \frac{H(7)-H(5)}{7-5}=\frac{11-6}{2}=\frac{5}{2}$
$H^{\prime}(6)$ is the rate at which the height of the tree is changing, in meters per year, at time $t=6$ years.
(b) $\frac{H(5)-H(3)}{5-3}=\frac{6-2}{2}=2$

Because H is differentiable on $3 \leq t \leq 5, H$ is continuous on $3 \leq t \leq 5$.
By the Mean Value Theorem, there exists a value $c, 3<c<5$, such that $H^{\prime}(c)=2$.
(c) The average height of the tree over the time interval $2 \leq t \leq 10$ is given by $\frac{1}{10-2} \int_{2}^{10} H(t) d t$.

$$
\begin{aligned}
\frac{1}{8} \int_{2}^{10} H(t) d t & \approx \frac{1}{8}\left(\frac{1.5+2}{2} \cdot 1+\frac{2+6}{2} \cdot 2+\frac{6+11}{2} \cdot 2+\frac{11+15}{2} \cdot 3\right) \\
& =\frac{1}{8}(65.75)=\frac{263}{32}
\end{aligned}
$$

The average height of the tree over the time interval $2 \leq t \leq 10$ is $\frac{263}{32}$ meters.
(d) $G(x)=50 \Rightarrow x=1$

$$
\begin{aligned}
& \frac{d}{d t}(G(x))=\frac{d}{d x}(G(x)) \cdot \frac{d x}{d t}=\frac{(1+x) 100-100 x \cdot 1}{(1+x)^{2}} \cdot \frac{d x}{d t}=\frac{100}{(1+x)^{2}} \cdot \frac{d x}{d t} \\
& \left.\frac{d}{d t}(G(x))\right|_{x=1}=\frac{100}{(1+1)^{2}} \cdot 0.03=\frac{3}{4}
\end{aligned}
$$

According to the model, the rate of change of the height of the tree with respect to time when the tree is 50 meters tall is $\frac{3}{4}$ meter per year.
$2:\left\{\begin{array}{l}1: \text { estimate } \\ 1: \text { interpretation with units }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{H(5)-H(3)}{5-3} \\ 1: \text { conclusion using } \\ \text { Mean Value Theorem }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { trapezoidal sum } \\ 1: \text { approximation }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \frac{d}{d t}(G(x)) \\ 1: \text { answer }\end{array}\right.$
Note: $\max 1 / 3$ [1-0] if no chain rule

AP ${ }^{\circledR}$ CALCULUS AB
 2018 SCORING GUIDELINES

Question 5

(a) The average rate of change of f on the interval $0 \leq x \leq \pi$ is $\frac{f(\pi)-f(0)}{\pi-0}=\frac{-e^{\pi}-1}{\pi}$.
(b) $f^{\prime}(x)=e^{x} \cos x-e^{x} \sin x$
$f^{\prime}\left(\frac{3 \pi}{2}\right)=e^{3 \pi / 2} \cos \left(\frac{3 \pi}{2}\right)-e^{3 \pi / 2} \sin \left(\frac{3 \pi}{2}\right)=e^{3 \pi / 2}$
The slope of the line tangent to the graph of f at $x=\frac{3 \pi}{2}$ is $e^{3 \pi / 2}$.
(c) $f^{\prime}(x)=0 \Rightarrow \cos x-\sin x=0 \Rightarrow x=\frac{\pi}{4}, x=\frac{5 \pi}{4}$

x	$f(x)$
0	1
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}} e^{\pi / 4}$
$\frac{5 \pi}{4}$	$-\frac{1}{\sqrt{2}} e^{5 \pi / 4}$
2π	$e^{2 \pi}$

The absolute minimum value of f on $0 \leq x \leq 2 \pi$ is $-\frac{1}{\sqrt{2}} e^{5 \pi / 4}$.
(d) $\lim _{x \rightarrow \pi / 2} f(x)=0$

Because g is differentiable, g is continuous.
$\lim _{x \rightarrow \pi / 2} g(x)=g\left(\frac{\pi}{2}\right)=0$
By L'Hospital's Rule,
$\lim _{x \rightarrow \pi / 2} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pi / 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{-e^{\pi / 2}}{2}$.
$2:\left\{\begin{array}{l}1: f^{\prime}(x) \\ 1: \text { slope }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { sets } f^{\prime}(x)=0 \\ 1: \text { identifies } x=\frac{\pi}{4}, x=\frac{5 \pi}{4} \\ \quad \text { as candidates } \\ 1: \text { answer with justification }\end{array}\right.$
$3:\left\{\begin{array}{c}1: g \text { is continuous at } x=\frac{\pi}{2} \\ \quad \text { and limits equal } 0 \\ 1: \text { applies L'Hospital's Rule } \\ 1: \text { answer }\end{array}\right.$
Note: $\max 1 / 3$ [1-0-0] if no limit notation attached to a ratio of derivatives

AP ${ }^{\circledR}$ CALCULUS AB 2018 SCORING GUIDELINES

Question 6

(a)

(b) $\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=\frac{4}{3}$

An equation for the line tangent to the graph of $y=f(x)$ at $x=1$ is $y=\frac{4}{3}(x-1)$.

$$
f(0.7) \approx \frac{4}{3}(0.7-1)=-0.4
$$

(c) $\frac{d y}{d x}=\frac{1}{3} x(y-2)^{2}$
$\int \frac{d y}{(y-2)^{2}}=\int \frac{1}{3} x d x$
$\frac{-1}{y-2}=\frac{1}{6} x^{2}+C$
$\frac{1}{2}=\frac{1}{6}+C \Rightarrow C=\frac{1}{3}$
$\frac{-1}{y-2}=\frac{1}{6} x^{2}+\frac{1}{3}=\frac{x^{2}+2}{6}$
$y=2-\frac{6}{x^{2}+2}$
Note: this solution is valid for $-\infty<x<\infty$.
$2:\left\{\begin{array}{l}1: \text { solution curve through }(0,2) \\ 1: \text { solution curve through }(1,0)\end{array}\right.$
Curves must go through the indicated points, follow the given slope lines, and extend to the boundary of the slope field.
$2:\left\{\begin{array}{l}1: \text { equation of tangent line } \\ 1: \text { approximation }\end{array}\right.$

1 : separation of variables
2 : antiderivatives
$5:\{1:$ constant of integration
and uses initial condition
1: solves for y
Note: $0 / 5$ if no separation of variables
Note: $\max 3 / 5$ [1-2-0-0] if no constant of integration

